24CH カードロガー GTR-24H

操作説明書一現地操作編

2013 年 10 月 ジオテクサービス株式会社

〒950-0951 新潟市中央区鳥屋野4丁目7-22
TEL 025-282-3246 FAX 025-284-00144
URL http://www.geots.co.jp

1. データロガーの仕様

データロガーの仕様を以下に示す。

表-1 データロガー (24CH型) の仕様

項目	仕 様						
型式	GTR-24H						
種別	電圧入力型 多チャンネル 自動計測データロガー						
入力電圧範囲	+10.000V を-10000~10000 に変換(1mV 分解能)						
入力チャンネル数	24ch (4CH 単位で端子台の取り外し可能)						
自動計測間隔	1, 2, 3, 10, 15, 20, 30、60 分~1, 2, 3, 4、6, 8, 12, 24 時間で設定可能						
データ記録個数	内部メモリに 20,000 個保存(10 分計測で約 4.6 ヶ月)						
ノーグ 記跡 画剱	上限を越えると古い順に上書きされます						
データ形式	CSV 形式テキストファイル(連番, 日付, 時刻, 計測電圧値 1~24CH, バッテリ電圧)						
センサ用電源出力	DC12V±0.1V、4CH ごとの合計で 0.1A 以内(0.15A 以上で出力停止)						
外部電源出力	DC OUT:計測時 最大 0.5A (電源入力と同じ非安定化電源出力)						
電源出力時間	計測時の自動出力時間を 0~60 秒間の間で設定可能。						
A 文[[字] [[本]] [[本]	SD カード SDHC カードに CSV 形式でデータをコピー						
外部記憶媒体	(注:SDHCカードで稀に使用できない製品もあります)						
通信ポート	RS-232C または RS-485 を選択使用、通信形式 B8, PN, S1						
通信速度	9600, 19200, 38400, 57600, 115200bps から選択						
操作・設定	POWER、RUN-STOP-CARD/TEST、MENU-NEXT,回転つまみ						
表示器	液晶表示器 16 文字×2 行 (バックライト無し)						
電源入力	DC9~15V(市販の 12V バッテリに対応。小型 7.2Ah クラスで 4~6 ヶ月計測)						
消費電流	待機時約 1.5mA、計測中:センサ無負荷時約 40mA、最大負荷時約 800mA						
動作温度範囲	-10~+50℃ (結露なきこと)						
寸法・重量	W240×D155×H34、1250g (固定具を含まず)						

2. データロガーの主な操作方法

デー 操 作 と「設 る。

タロガーGTR-24H の は、「操作スイッチ」 定ダイヤル」を使用す

【1. センサ計測値の確認方法】

①中央の[RUN-STOP-CARD/TEST] スイッチを 1回軽く[TEST]側に倒す。

[注意点]

- 1)SD カードが挿入されているとデータコピーが 始まります。
- 2)毎整時の自動計測時刻に操作を行わない。 その時刻のデータが欠測する。

②最初にメモリの使用量 (0~100%) が表示され 次に、左に示すように 1CH の電圧値が表示されます。 ←左の例では 1CH =1444mV

③[**ダイヤル**]を回すと 1 ~24CH の計測値が表示される。 但し Vbat はバッテリ電圧 (0.01V 単位) を表します。 ←左の例では、25CH =バッテリ電圧 11.80V

④テストが終わったら、中央の操作スイッチを 必ず「RUN=自動計測」側に倒します。[STOP]のままだと、自動計測が行われません。 注) テストは5分で自動的に終わり[STOP]状態に戻ります。

【2. SD カードによるデータの回収方法】

OFF CARD/TEST NEXT

現在の日時

①SD カードまたは SDHC カードを挿入する。 (ラベルの有る面が上向き)

※稀に、使用できない SDHC カードがあります。

②中央の[RUN-STOP-CARD/TEST] スイッチを 1 回軽く[CARD]側に倒す。

※一部の SDHC カードにおいて、最初の使用の際、 ロガーがカードを認識するまでに、30 秒から 1 分程度の長い時間を要する場合があります。

注意) 毎整時の自動計測時刻には操作を行わない。 その時刻のデータが欠測する。

③SD カードにデータのコピーが始まり10 秒から 1 分で完了する。画面に「Write OK!」と出れば終了。

④カードを抜いた後、必ずスイッチを 「RUN=自動計測」側に倒します。

[STOP]のままだと、自動計測が行われません。

⑤自動計測中なら、画面に次回の計測時刻が [NEXT>15:30]のように表示される。

バッテリ電圧 次回の計測時刻

⑥SD カードに、以下の名前で、データがコピーされています。

"24H01001-101217-12:5959.csv"

機種名 24H ー 機械シリアル番号 - 日付 - 時刻 . 拡張子 csv

⑥エクセル等が入ったパソコンでファイル名をクリックすると、データが表示されます。 データは以下の順番に記録されています。

[連番、日付、時刻、1CH 測定電圧 (mV), 2 CH 測定電圧,,,,24CH 測定電圧, バッテリ電圧(0.01V 単位)]

<ファイル内容例:メモ帖やワードパッドで開いた場合>

<ファイル内容例:エクセルで開いた場合のイメージ>

; No.	日付	時刻	1	2	3	4	5	6	7	8	9	10	24	25
12	2011/3/14	6:00:00	678	1474	869	0	1717	1362	0	0	2221	0	0	1279
13	2011/3/14	7:00:00	678	1474	869	0	1717	1362	0	0	2221	0	0	1290
14	2011/3/14	8:00:00	678	1474	869	0	1717	1362	0	0	2222	0	0	1303

※実際のデータファイルには、上段の日本語のコメントはありません。

(7)計測電圧値を物理量に変換する場合は以下の計算を行います。

※ 物理値 Y= (電圧 XmV − A) × B + C

ここで A:初期値等(ゼロ点の出力電圧)

B:校正係数

C:補正値(任意)

以下に、センサの変換係数の例を示します。

表-2 センサの規定出力範囲と変換係数の例

計測対象		伸縮計		傾斜計	水位計		気温
センサ名		JX-P420	その他	GIC-45S	GL-表示	標高表示	温度
測定範囲	•	$0\sim256$ mm	$0\sim 100$ mm	$-15\sim30^{\circ}$	$0\sim 20 \mathrm{m}$	$0\sim20\mathrm{m}$	-30~70°C
出力電圧範囲	最小	640 0		1100	0	0	0
(mV)	最大	2560	5000	5600	5000	5000	5000
物理値Yを	A	800	1000	.000 2600 0		0	0
求めるための	りるための Β		0.02	0.01	-0.004	-0.004	0.02
変換係数例	変換係数例 C		同左		30m (センサ設置 深度)	250.00m (管頭標 高)	-30
	単位	mm	mm	0	GL-m	EL m	${\mathbb C}$
計測CH例		1	2	3	4	5	6
備考				0° で2600 mV出力			

【3. 時計の設定方法】

メニュースイッチ[MENU]とロータリースイッチで設定値を変更します。

①右端のメニュー操作スイッチを上側 [MENU 側] に押すと設定メニューが表示される。

②最初はメニュー番号1が表示される。

[MENU]

1: Clear Mem

③ダイヤルを回し、メニュー項目を[7: Set Time] 時刻設定に合せる

操作スイッチ メニュー項目

ダイヤル

【設定メニュー項目の一覧】

→1: Clear Mem データ記録用メモリのクリア

2: Interval 定時計測のインターバルを設定

3: Sensor Time 定時計測時にセンサー電源を供給後計測までの待ち時間設定

4: Input Type センサー入力の形式 (3線、4線) を設定

5: Disp Mem データ記録メモリー内容の表示

6: Set Date 内部時計の年月日を設定

7: Set Time 内部時計の時刻を設定

8: Remote Mode 定時計測の許可/禁止を外部から制御するリモートモードの設定・解除

9: Com CH, Adr 通信方式 (RS-232C, 485) の選択と RS-485 アドレスの設定

10: Com BR 通信ボーレートの設定

11: Com WakeUp 通信の受信 RXD 信号で起動する通信起動モードの使用と起動時間設定

(スイッチを上[MENU]側に押すとメニュ ー項目選択に戻る)

④操作スイッチを**下[NEXT]側** に倒すと、現在の時刻が表示され 変更項目(時、分、秒)の上に vv マークが表示される。

操作スイッチ

- ⑤ダイヤルを回し時刻を希望の値に設定後、操作スイッチを下[NEXT]側に長押しする。 変更しない場合は、操作スイッチを下[NEXT]側に押すと、設定箇所が、分、秒と先に進む。
- ⑥途中で、前に戻る場合は操作スイッチを上[MENU]側に押す。
- <参考>設定値を書き込むには操作スイッチを下[NEXT]側に長押しするが、ローターリースイッチの 頭を押しても、同じように設定が書き込まれる。
- <注意>通常、時計のズレは月 1~2 分以内である。

もし、日付まで修正が必要な場合は、メニュー項目「6: Set Date」で、年月日の設定を行う。